Effects of pH on Na+-Ca2+ exchange in canine cardiac sarcolemmal vesicles.

نویسندگان

  • K D Philipson
  • M M Bersohn
  • A Y Nishimoto
چکیده

Using highly purified sarcolemmal vesicles isolated from dog ventricles, we examined the effects of pH on Na+-Ca2+ exchange. The initial rate of Nai+-dependent Ca2+ uptake is a sigmoid function of pH. The Ca2+ uptake is inhibited at pH 6 and stimulated at pH 9 (as compared with uptake at pH 7.4). This dependence on pH suggests that the ionization state of a histidine residue may be important in Na+-Ca2+ exchange. The effects of H+ on Nai+-dependent Ca2+ uptake are partially competitive with Ca2+, although this relationship is complex. Nao+-dependent Ca2+ efflux is also sensitive to H+ and increases monotonically with pH. These effects of pH appear to be due to intrinsic interactions with the Na+-Ca2+ exchange system and are not due to an alteration of Na+-H+ exchange or membrane permeability. The effects of pH on vesicular Na+-Ca2+ exchange are apparent only at low Ca2+ and Na+ concentrations. Thus modulation of vesicular Na+-Ca2+ exchange by pH is manifest only under ionic conditions which exist intracellularly in intact myocardium. Since the negative inotropy caused by acidosis is thought to reflect a fall in internal pH, these results suggest that alteration of sarcolemmal Ca2+ transport (medicated by Na+-Ca2+ exchange) by internal pH may contribute to the regulation of myocardial contractility by pH.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canine cardiac sarcolemmal vesicles demonstrate rapid initial Na(+)-Ca2+ exchange activity.

To identify a rapid, uninhibited rate of exchange activity, we investigated in canine sarcolemmal vesicles the rapid kinetics of Na(+)-Ca2+ exchange. Sarcolemmal vesicles were incubated in 160 mM NaCl and 20 mM HEPES at 25 degrees C (pH 7.4) and actively loaded with 45Ca2+ for 2 minutes by Na(+)-Ca2+ exchange. After further uptake was inhibited by dilution into 0.15 mM Na(+)-free EGTA, sarcolem...

متن کامل

Effects of phospholipase C on the Na+-Ca2+ exchange and Ca2+ permeability of cardiac sarcolemmal vesicles.

We have examined the effects of phospholipase C pretreatment on Ca2+ transport in highly purified canine cardiac sarcolemmal vesicles. Na+-Ca2+ exchange, measured as Nai+-dependent Ca2+ uptake, is stimulated when 10-70% of the membrane phospholipid has been hydrolyzed. Although the phospholipase C treatment also increases sarcolemmal passive Ca2+ flux, the membrane maintains a sufficient permea...

متن کامل

Na+-Ca2+ exchange in inside-out cardiac sarcolemmal vesicles.

We have measured Na+-CaZ+ exchange in the insideout vesicles of highly purified cardiac sarcolemma from dog ventricles. This was accomplished in a mixed population of Sarcolemmal vesicles by first loading the inside-out vesicles with Na+ through the action of the glycoside-sensitive, ATP-dependent Na' pump. Due to the asymmetric nature of active Na' transport, this will only occur in inside-out...

متن کامل

Stimulation of Na+-Ca2+ exchange in cardiac sarcolemmal vesicles by proteinase pretreatment.

The Na+-Ca2+ exchange activity of purified canine cardiac sarcolemmal vesicles can be strikingly stimulated if the vesicles are pretreated with a serine or thiol proteinase. The Km (Ca2+) for Na+i-dependent Ca2+ influx is reduced from 22.2 +/- 2.3 to 8.1 +/- 0.3 microM while Vmax is increased from 15.1 +/- 3.6 to 18.9 +/- 5.2 nmol Ca2+ . mg protein-1 . s-1. Na+o-dependent Ca2+ efflux is also st...

متن کامل

Demonstration of a Na+/H+ exchange activity in purified canine cardiac sarcolemmal vesicles.

Purified canine cardiac sarcolemmal membrane vesicles exhibit a sodium ion for proton exchange activity (Na+/H+ exchange). Na+/H+ exchange was demonstrated both by measuring rapid 22Na uptake into sarcolemmal vesicles in response to a transmembrane H+ gradient and by following H+ transport in response to a transmembrane Na+ gradient with use of the probe acridine orange. Maximal 22Na uptake int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 50 2  شماره 

صفحات  -

تاریخ انتشار 1982